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During the last decades the disease vector Aedes albopictus (Ae. albopictus) has rapidly spread around the
globe. The spread of this species raises serious public health concerns. Here, wemodel the present distribution
and the future climatic suitability of Europe for this vector in the face of climate change. In order to achieve the
most realistic current prediction and future projection, we compare the performance of four different
modelling approaches, differentiated by the selection of climate variables (based on expert knowledge vs.
statistical criteria) and by the geographical range of presence records (native range vs. global range).
First, models of the native and global range were built with MaxEnt and were either based on (1) statistically
selected climatic input variables or (2) input variables selectedwith expert knowledge from the literature. Native
models show high model performance (AUC: 0.91–0.94) for the native range, but do not predict the European
distributionwell (AUC: 0.70–0.72).Models based on the global distribution of the species, however, were able to
identify all regions where Ae. albopictus is currently established, including Europe (AUC: 0.89–0.91).
In a second step, themodelled bioclimatic envelope of the global rangewas projected to future climatic conditions
in Europe using two emission scenarios implemented in the regional climate model COSMO-CLM for three time
periods 2011–2040, 2041–2070, and 2071–2100. For both global-driven models, the results indicate that
climatically suitable areas for theestablishment ofAe.albopictuswill increase inwesternandcentralEuropealready
in 2011–2040 and with a temporal delay in eastern Europe. On the other hand, a decline in climatically suitable
areas in southern Europe is pronounced in the Expert knowledge basedmodel. Our projections appear unaffected
by non-analogue climate, as this is not detected by Multivariate Environmental Similarity Surface analysis.
The generated risk maps can aid in identifying suitable habitats for Ae. albopictus and hence support monitoring
and control activities to avoid disease vector establishment.
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1. Introduction

The invasive disease vector Aedes albopictus (Ae. albopictus) has
recently received much attention (e.g. Benedict et al., 2007; Enserink,
2008;Medley, 2010). Themosquitohas been rankedamong thefirst 100
of the Worlds´ worst invaders (Crans, 2008). It has spread from its
original distribution area in South-east Asia (Hawley, 1988) to at least
38 countries in North and South America, Africa, Oceania and even
Europe (Benedict et al., 2007), likely by global transport of goods (e.g.
Lounibos, 2002; Tatem et al., 2006; Fischer et al., 2010a). The first
European invasion of Ae. albopictus was reported in 1979 from Albania
(AdhamiandReiter, 1998).Upon its secondarrival in Europe in 1990 the
mosquito managed to establish permanent populations in Italy
(Sabatini et al., 1990) and is now found across the Mediterranean area
(Spain, France, Slovenia, Croatia and Greece; see Suppl. Reference list).

The spread of Ae. albopictus raises serious public health concerns.
Under experimental conditions Ae. albopictus is able to transmit 22
viruses (Gratz, 2004). In nature it is mainly known to be an important
vector of dengue, chikungunya and West Nile. Also Yellow fever virus
and eastern equine encephalitis virus (North America), Ross River
virus (Australia), Usutu virus (Italy) and the heartworms Diofilaria
immitis andD. repens (Italy) were isolated from specimens collected in
the field (Mitchell et al., 1987; Cancrini et al., 2003a,b; Calzolari et al.,
2010). Due to its rapid spread (Lounibos, 2002), broad ecological
plasticity (Delatte et al., 2008b) and high population density, this
species has the potential to serve as an epidemic vector. Furthermore,
its capacity to vertically transmit dengue and La Crosse (Tesh and
Gubler, 1975; Rosen et al., 1983) enhances the possibility of
establishing diseases in new areas (Delatte et al., 2008a). In Europe,
the medical relevance of Ae. albopictus was highlighted in 2007 when
the occurrence of the species was related to a chikungunya-epidemic
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in northern Italy in the region of Ravenna (Rezza et al., 2007).
Recently, autochthonous cases of dengue fever were diagnosed in
southern France for the first time (La Ruche et al., 2010) where Ae.
albopictus serves as vector. Furthermore, autochthonous dengue virus
infections were reported from Croatia (Schmidt-Chanasit et al., 2010;
Gjenero-Margan et al., 2011).

Even under conservative and optimistic scenarios, future climate
change is likely to increase air temperatures. At the end of this century
the number of hot days in central Europe is projected to reach
conditions that are currently experienced in southern Europe.
While heavy summer precipitation is expected to increase in north-
eastern parts of Europe, it is likely to decrease in the south (Beniston
et al., 2007). In addition, changes in annual cold extremes are
projected, whereby the largest relative warming is expected for
north-eastern Europe (Goubanova and Li, 2007). These climatic
changes may support a range shift and further regional establishment
of Ae. albopictus.

As an ectothermal arthropod, Ae. albopictus is unable to regulate its
body temperature. Hence the species directly depends on the thermal
conditions of its environment. Under laboratory conditions, changes
in temperature and precipitation affect the population dynamics of Ae.
albopictus, which suggests that climate change is likely to extend the
limits of its northern distribution (Alto and Juliano, 2001). Regarding a
northward shift, especially temperature constraints in the cold period
and decreasing photoperiod are of outmost interest, because these
factors determine diapause of eggs and thus the survival of the
species. The 10 °C coldest-month isotherm coincides with the
separation between continuously breeding populations and those
that must undergo a period of dormancy to survive cold periods in
winter (Mitchell, 1988). Larval surveillance in northern Japan shows
that the mean temperature of the coldest month below −2 °C is
potentially lethal there (Kobayashi et al., 2002). Nawrocki and Hawley
(1987) state that the −5 °C coldest-month isotherm describes the
maximum northward expansion of Ae. albopictus in continental Asia
and, presumably, also in North America. A risk of establishment in
Europe is considered for areas with 0 °C or higher as cold-month
isotherm (Mitchell, 1995; Knudsen, 1995). But, it is not only the
limitation by low temperatures that has to be considered; warm
temperatures, too, play an important role for Ae. albopictus. Pumpuni
et al. (1992) pointed out that higher temperatures greatly reduce or
prevent diapause incidences in Ae. albopictus specimen that were
exposed to critical photoperiods. Results from natural foci in southern
Brazil demonstrate that diapause apparently evolved from non-
diapause or non-photoperiodic ancestors, whereby in southern parts
of USA a diapause reduction was observed presumably due to rapid
local adaptation (Lounibos et al., 2003). Sufficient precipitation or
perhaps more generally a suitable local moisture regime is an
additional prerequisite for the occurrence of the species. Moisture
directly controls the availability of breeding sites and the relative
humidity is an important factor for egg survival (Juliano et al., 2002).
Annual precipitation is reported to be higher than 500 mm in the
species' habitats in the Mediterranean area (Mitchell, 1995).

Previous approaches to map suitable climatic conditions for the
establishment of Ae. albopictus in Europe mostly focused on the risk of
invasion under current climatic conditions. Considering rainfall beside
other factors (photoperiod, temperature and humidity), Mitchell
(1995) developed a risk map for the Mediterranean Basin by
comparing the climatic conditions of the region with the estimated
climatic envelope of Ae. albopictus. Knudsen et al. (1996) investigated
the distribution of Ae. albopictus in Italy and projected the risk for a
broader distribution throughout Europe. This projection is based on
climatic criteria identified by Nawrocki and Hawley (1987) including
winter mean temperature, mean annual rainfall, and mean summer
temperature. Eritja et al. (2005) used the same climatic limits as
Mitchell (1995) and generated a detailed risk map for Spain, which
considered regional climatic conditions. For the United Kingdom,
Medlock et al. (2006) developed a GIS based model using mean
monthly temperature, annual rainfall and photoperiod to assess the
overwintering survival, spring hatching and production of over-
wintering eggs in autumn. The European Centre for Disease
Prevention and Control (ECDC) produced risk maps that are aiming
to predict climatic suitability of Ae. albopictus for the years 2010 and
2030 (ECDC, 2009). On a global scale, Benedict et al. (2007)
investigated the regional risk of invasion by Ae. albopictus. Their
analysis was carried out using eleven environmental data layers of the
present climate. Recently, Medley (2010) investigated environmental
(including climatic) niche shifts during the global invasion of the
species, by modelling niches separately for each continent. Notably,
most of the relevant literature is concerned with the present
distribution and risk of invasion by Ae. albopictus under current
climatic conditions. However, the predicted increase in temperature
that is based on climate change scenarios will probably extend the
spatial availability of breeding sites and also enhance mosquito
survival (Woodward et al., 2001).

Our analysis starts from the assumption that Ae. albopictus will
colonise climatically suitable niches around the world. We want to
identify areas that could serve as potential habitat for the species
today and in the future. Here, we assess the potential of Ae. albopictus
to establish in Europe under projected climatic trends in the 21st
century. In order to account for uncertainty in the selection of
presence records and environmental variables, we (1) compare
projections based on the species' former native range to those based
on its recent entire global range, and (2) apply variable selection by
expert knowledge as well as variable selection by an automated
statistical procedure.

2. Material and methods

We created distribution models with MaxEnt, using species
occurrences of the native range and of the entire range across the
globe. For both training areas (global and native) two sets of
bioclimatic data were prepared as input variables. One set was
selected using expert knowledge on species climatic constraints. The
second set was selected using solely statistical criteria. The future
climatic suitability of Ae. albopictus in Europe was projected for two
climate change scenarios. In addition, niche similarity between global
and native regions and climatic similarity between projections was
analysed.

2.1. Spatial distribution and presence records of Aedes albopictus

Presence records of Ae. albopictus at the global scale were taken
from Benedict et al. (2007). Additionally, a literature search of
scientific articles and reports of mosquito surveillance was conducted
for the years 2003 onwards to consider additional infestations (see
Supplemental Reference list). Reported occurrences of Ae. albopictus
without evident establishment were excluded from the dataset. This
resulted in a global dataset that consists of 6347 occurrence points
with 4683 occurrence points just for Brazil, due to a detailed
monitoring system in South America. Presence records for the United
States are available on county level but not as precise geographical
coordinates. Therefore the 1033 counties with documented presence
records were converted to points by digitising the centroids for each
of the counties.

Considering that worldwide, apart from the USA and Brazil, less
than 1000 coordinate pairs were available, a random set of ten percent
of the datawere extracted for Brazil and the USA. Hence, the density of
presence records for Brazil and the USA was reduced to levels that
correspond to the density of documented presence points in other
regions with maybe less intensified mosquito monitoring systems.
Without this stratified subsampling, the results would have been
biassed towards the climatic conditions of South and North America
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(Medley, 2010). Additionally, duplicate species records within one
raster cell of the training area (described in Section 2.2) were
removed. The total global number of presence records used for
modelling was 1199 (including 241 records in the native range).

2.2. Selection and pre-processing of climatic data

Current bioclimatic data (19 bioclimatic variables) were taken at a
spatial resolution of 5 arcmin (http://www.worldclim.com). These
bioclimatic variables are derived from monthly temperature and
rainfall values in order to generate more biologically meaningful
variables, which are recommended to use in ecological niche
modelling (Hijmans et al., 2005). Higher spatial resolution would
not correspond to the spatial accuracy of occurrence data for Ae.
albopictus.

Two climatic datasets with different spatial extent were generated.
The global climatic conditions of the land surfaces were used to model
the global distribution. For the definition of the “native range”models,
each native presence record was buffered with a circle of 1000 km
radius. The native range then included all areas which were located in
at least one of the circles. Hence, this range included a climatic
gradient within Asia, in order to yield a clear delineation of the
species' climate niche, but excluded areas that may be too far from the
realised distribution, such that geographical factors rather than
climate are dominant in limiting the species' distribution.

We used two sets of variables as input for global and native
models. The first set is based on expert knowledge on the climatic
requirements of the target species (e.g. Mitchell, 1995). Those
variables are the same for the native and for the global range. Most
variables represent thermal constraints (Table 1). In this model,
some variables show substantial collinearity: Annual mean temper-
ature (Bio1) is correlated with mean temperature of the warmest
and coldest quarter (Bio10 and Bio11) in the native and the global
range higher than r=0.7 (Pearson correlation coefficient). Never-
theless, as a pre-selection of variables based on expertise is often
useful (Elith and Leathwick, 2009), we kept these variables in our
analyses, and chose a modelling approach that is known to be robust
against collinearity (see Section 2.3). Hereafter, we will refer to this
set as the expert knowledge based model (EKBM).

The second set of variables was selected by using a statistical
procedure for native and global range separately. First, the importance
of each variable was quantified with a Jackknife test implemented in
MaxEnt (Elith et al., 2011). Variable importance is calculated in a
twofoldmanner based on the training gain for all variables in isolation
Table 1
Selected bioclimatic variables of native and global models, referring either to expert kno
bioclimatic variables measured by Jackknife test. Variables without mentioned training gain w
if used solely for the modelling procedure and additionally for the remaining dataset if this v
selection of variables. For instance, altitude as variable achieved comparatively low values for
of the dataset decreases remarkable, if altitude is removed. Therefore it is advisable to keep
for modelling with all selected variables. Training gain for the complete selected dataset is
Training gain of the global dataset is 1.42 for the expert knowledge based selection and 1.3

Training gain of selected bioclimatic variables and
altitude

Expert knowledge based

Global

Without
variable

With only
variable

Bio1 Annual mean temperature 1.35 0.67
Bio4 Temperature seasonality – –

Bio10 Mean temperature of the warmest quarter 1.27 0.70
Bio11 Mean temperature of the coldest quarter 1.33 0.64
BIO12 Annual precipitation 1.20 0.71
Bio17 Precipitation of the driest quarter – –

Bio18 Precipitation of the warmest quarter – –

Bio19 Precipitation of the coldest quarter – –

Alt Altitude 1.16 0.16
and for the remaining set of variables when the isolated variable is
dropped from the set (Yost et al., 2008). To reduce collinearity in the
set of statistically selected variables (Dormann et al., 2008) variables
were removed that had a Pearson correlation coefficient rN0.7 with
any other higher-ranking variable in the results of the Jackknife test.
We applied the variable selection procedure separately for the native
and global range. The statistically derived sets of variables consist
mainly of variables that represent the precipitation regime for the
global range and identical number of temperature and precipitation
variables for native range (Table 1). Models based on this set of
variables are henceforth called statistic based model (SBM).

We projected the best models (determined by AUC-value, Section
2.3) to the future European climate. Projections of climate change in
the 21st century refer to the scenarios for greenhouse gas emissions
implemented within global or regional climate models. A1B and B1
scenario, which were considered as marker scenarios that best
illustrate the respective storyline (IPCC, 2007), were applied for our
projections of the future climate suitability for Ae. albopictus in
Europe. In short, the A1B scenario is characterised by rapid global
oriented economic growth and technological change towards the
balanced use of fossil and non-fossil energy resources. The B1 scenario
projects a more rapid change towards a service information economy
with the introduction of resource efficient technologies while
assuming a similar economic growth. It matches well with the
European Union target of keeping global anthropogenic warming
below two Kelvin above the pre-industrial level (Jacob and Podzun,
2010). Hence warming tendencies are projected to be stronger in the
A1B scenario.

On http://www.worldclim.com data of the projected climate
change are provided for the global climate models CCCMA and
HADCM, which originally have very coarse spatial resolution (about
250 km). Climatic changes were interpolated to the high grid
resolution of the current climatic conditions. As a consequence, this
simple downscaling procedure does not account for climatic changes
at small scales. In order to achieve more realistic projections of future
climatic suitability for Ae. albopictus in Europe, we instead used data of
climate change provided from the regional climate model COSMO-
CLM (CCLM). Near-scale physical processes integrated in CCLM
(spatial resolution about 18 km) are fitted at the boundaries with
large-scale conditions given by the global model ECHAM5 (Rockel
et al., 2008). Such a dynamical downscaling procedure enhances
the quality of climate impact studies on vector-borne diseases due
to integrated small-scale specifics such as topography or further
landscape features (Jacob, 2008).
wledge based or statistic based model. Listed are the training gains for the selected
ere not part of the selected data set. Training gains were calculated for a single variable
ariable has been dropped from the set. Both aspects must be considered for a statistical
the training gain is used as the single variable formodelling procedure, but training gain
this variable within the set. After selection of the variables, training gain was calculated
highest for the native datasets (expert knowledge based: 1.67, statistic based: 1.69).
4 for the statistic based selection.

Statistic based

Native Global Native

Without
variable

With only
variable

Without
variable

With only
variable

Without
variable

With only
variable

1.42 0.80 0.99 0.66 – –

– – – – 1.43 0.84
1.42 0.72 – – – –

1.42 0.90 – – 1.50 0.91
1.35 1.00 1.17 0.72 1.51 1.00
– – – – 1.42 0.66
– – 1.23 0.31 – –

– – 1.21 0.48 – –

1.24 0.74 1.18 0.16 1.36 0.75

http://www.worldclim.com
http://www.worldclim.com
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Climatic data were separately averaged over time periods 2011–
2040, 2041–2070 and 2071–2100 for each scenario. Bioclimatic
variables for modelling future climate projections were calculated in
the same way as the original variables for current conditions. The
spatial resolution of CCLMwas resampled to the 5 arcminutes used for
the current conditions. The pre-processing of the CCLM data was done
via climate data operator codes (Schulzweida et al., 2009). The spatial
extension of Europe for the current and future projections is adjusted
to the defined space of the CCLM data.
2.3. Species distribution models

Species distribution models were built with MaxEnt. MaxEnt is a
machine-learning technique combining species occurrence data with
detailed climatic and environmental datasets in order to predict
species distribution (Phillips et al., 2006; Phillips and Dudik, 2008).
MaxEnt is favoured among other (pseudo) presence-only species
distribution models due to high predictive power across all sample
sizes (Elith et al., 2006; Wisz et al., 2008). In addition, variable
selection in MaxEnt is less affected by correlated variables than e.g.
stepwise regression, so there is less need to remove such correlated
variables or, for instance, pre-process covariates by calculating
principal components (Elith et al., 2011). Model residuals were tested
for spatial autocorrelation using Morans I (Dormann et al., 2007).

Several parameter settings affect MaxEnt performance: Regular-
isation modifiers, which reduce the likelihood of overfitting and thus
increase the predictive ability of modes beyond the training region
(Phillips and Dudik, 2008), were set to 1. Increasing the number of
model training iterations beyond the default value of 500 enhanced
model performances, and the maximum number of iterations was
therefore set on 2000 for all models. Furthermore, models were run
with following settings: feature types were automatically selected
depending on the training sample size (auto feature), convergence
thresholds were 0.00001, maximum number of background points
were 10000 as more background points do generally not enhance
model quality criteria, but extend running time (Phillips and Dudik,
2008).

The model performance was quantified using the area under the
receiver operator characteristic curve (AUC), a threshold-indepen-
dent quality criterion (e.g. Elith et al., 2006). AUC-values can be
interpreted as the probability that the model assigns a higher
occurrence probability to a randomly selected presence location
than to a randomly selected absence location. In order to yield
unbiassed estimates of model performance, we employed a standard
split-sample strategy. Models were trained using a random subset
(70%) of occurrence data and then tested on the remaining 30% (see
also Araujo et al., 2005). This procedure was replicated 100 times and
finally averaged. Both native models were additionally projected onto
current climatic conditions of Europe.

Those models were further analysed that yielded high model
quality criteria when tested with European presence records
(Table 2). Additionally, prediction quality was visualised with maps
of current climatic suitability for the entire range, for the native range,
and for Europe (Figs. 2–3). Climate change projections were made for
Table 2
Evaluation of model performance based on the area under the curve for the receiver–opera
models have AUC-values above 0.7, excellent models achieve AUC-scores above 0.9. AUC va
and test data was replicated 100 times, reported are mean and, in brackets, standard devia

Evaluation of model
quality via AUC-scores

Native model (trained and tested in native
range)

Native m
tested in

Expert knowledge based Statistic based Expert kn

Training data 0.93 (±0.01) 0.94 (±0.01) 0.94 (±0
Test data 0.91 (±0.01) 0.91 (±0.01) 0.72 (±0
three time periods at high spatial resolution for Europe in order to
identify regions with future climatic suitability for the mosquito.

2.4. Niche similarity and climatic similarity

We tested for differences in environmental conditions at the
occurrence points using Multiresponse Permutation Procedure
(MRPP) with 999 replicates. Occurrence points were assigned to
one of three groups: the native range, the invasive non-European
range, or the invasive European range. The MRPP was repeated for all
three sets of environmental variables that were used in themodelling,
i.e. those of the EKBM, the native SBM, and the global SBM.
Additionally, we tested for niche differences between models trained
on the native or on the global range, using a randomization test based
on a method by Warren et al. (2008). Niche overlap between two
model predictions is quantified with the I statistic (Table 3). Since our
main regional interest is Europe, we evaluated niche similarity for
Europe only. The test compares the niche overlap of the original data
with the niche overlap of randomised data, where we randomised the
assignments to the regions (native and global), for both occurrence
and background points. In order to keep the number of presence
records constant in both regions, we separately randomised the
region assignments for occurrence points and for background points.
We used a one-sided test, with the null hypothesis that niche
similarity is smaller or equal in the randomised data than in the
original data; 199 randomisations were performed.

Furthermore, potential non-analogue climatic conditions between
all projections in space and time were calculated. If non-analogue
climate is detected, this requires caution in the interpretation of the
results (Fitzpatrick and Hargrove, 2009). We determined potential
non-analogue climate by using Multivariate Environmental Similarity
Surface (MESS) analysis (Elith et al., 2010) for all of our projections in
space and time. The MESS analysis measures the similarity between
those environments used to train the model and the new projected
environments for any grid cell (Elith et al., 2011). Regions with
dissimilar values of the used variables, representing values that are
outside the range of environmental training area, can be detected
(Elith et al., 2010).

Preparation of presence records, current and projected climatic
data was executed in ArcGIS 9.3.1 and R 2.11.0 (R Development Core
Team, 2010). Correlation analysis of bioclimatic variables andMoran's
I test were done in R. This software was also used to perform MRPP
using the package “vegan” (Oksanen et al., 2011), while the package
“phyloclim” (Heibl, 2011) was used for calculating I statistics (Warren
et al., 2008). Species distribution models and MESS as well as
calculation of variables contribution and Jackknife tests were carried
out in MaxEnt 3.3.3e.

3. Results

3.1. Bioclimatic envelope and current distribution

Regarding the bioclimatic envelope, the occurrence of the
mosquito mainly refers to regions that exhibit more than 500 mm
of average annual precipitation and annual mean temperatures above
tor characteristic (AUC). AUC-values range from 0 to 1 (perfect discrimination); useful
lues were calculated on randomly selected test and training data; the split into training
tion. Both global models performed best and were used for further analysis.

odel (trained in native range,
European range)

Global model (trained and tested in global
range)

owledge based Statistic based Expert knowledge based Statistic based

.01) 0.94 (±0.01) 0.91 (±0.01) 0.90 (±0.01)

.02) 0.70 (±0.02) 0.90 (±0.02) 0.89 (±0.01)



Table 3
Niche similarity based on I statistic (Warren et al., 2008) for the different models,
evaluated for the regional example of Europe. In all comparisons, a randomisation test
indicates significant differences in the pairs of modelled niches (pb0.05).

Model comparison Niche similarity

Global expert knowledge based vs. global statistic based model 0.91
Native expert knowledge based vs. native statistic based model 0.85
Global expert knowledge based vs. native expert
knowledge based model

0.72

Global expert knowledge based vs. native statistic based model 0.65
Global statistic based vs. native expert knowledge based model 0.74
Global statistic based vs. native statistic based model 0.66
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10 °C (Fig. 1). This is found to be true for both, the native and the
invasive range. Within its invasive distribution the mosquito
established in areas with annual mean temperatures between 10
and 25 °C and annual precipitation that ranges from 500 mm up to
2000 mm. The native range of Ae. albopictus is characterised by
slightly higher temperatures and rainfall compared to the invasive
range. Notably, the invaded range in Europe achieved the lowest
values of annual mean temperature and annual precipitation.

The EKBMs were mainly built on temperature variables. Results of
the Jackknife test for the selection of meaningful variables for the SBM
differ for the global and the native range: While the global-driven
SBM mainly includes hydrological variables, the native-driven SBM
reflects equally thermal and hydrological constraints. Altitude and
annual precipitation were the only variables used in both EKBMs and
SBMs, regardless of the chosen training region (Table 1). Both native
and both global models showed high model performance for their
respective training region (Table 2). The global EKBM and SBM
Fig. 1. Bioclimatic envelope for Aedes albopictus (native and invasive range), derived by
geographically explicit overlay of presence records with annual bioclimatic variables.
Annual mean temperature is highest in the native range (South-east Asia) with an
average value of 23.7 °C (±5.1 standard deviation) and the invasive range excluding
Europe with 21.7 °C (±3.7), but lowest in Europe with 13.8 °C (±2.2). High values of
annual precipitation are characteristic for the native range (2028 mm ±691) and for
the invasive range without Europe (1392 mm±496). Invaded European regions obtain
an average of 831 mm (±218) of annual precipitation. Globally, the averaged annual
mean temperature for regions with occurrence of the species is 20.3 °C (±5.2) and
averaged annual precipitation is 1392 mm (±632). The climatic conditions at the
occurrence points differ significantly between the native range, the invaded European
range, and the invaded non-European range (significance level of 0.001, Multiresponse
Permutation Procedure with 999 replicates; the result holds for all three sets of
environmental variables used in this study).
delivered a realistic representation of the global range (Fig. 2).
Interestingly, large parts of the continental west coasts of South
America (Chile), Mexico and the United States (California, Oregon and
Washington) as well as Europe (France, Portugal) are determined as
climatically suitable, although there are currently no presence
records. Furthermore the eastern side of Australia has been predicted
as climatically suitable in both global models where the species is not
established. The SBM made better predictions of the distribution of
the mosquito in India. European areas with current distributions are
successfully predicted with both global models (Figs. 2,4,5).

3.2. Projected climatic suitability for Aedes albopictus in Europe

The modelled niches for Europe differed significantly between
models based on native and global occurrence records (Table 3). Both
native models that are based on records of South-east Asia do not
predict the recent distribution of Ae. albopictus in Europe well
(Table 2, Fig. 3). While the native-driven EKBM projected the north-
western part of Europe (British Isles and north-west of France) as a
preferable region for mosquito establishment, the SBM additionally
detected Denmark and the northern part of Germany as climatically
suitable. Only the northeast of Italy and some eastern coastal
Mediterranean regions are correctly predicted as climatically suitable
in both native-driven models. As a consequence, European climatic
suitability of Ae. albopictus in the 21st century was projected using the
current global range of distribution as training region.

Italy provides highest climatic suitability under current climatic
conditions in both global models. The western Atlantic coast of
Portugal, Spain and France are pointed out as climatically suitable as
well, though records from these regions are still missing. Both models
already project a slight decrease of climatic suitable areas in southern
Europe for 2011–2040 (Figs. 4–5). The decrease is more pronounced
in south-western parts of Europe. However, Italy and south-eastern
parts of Europe will still provide suitable climatic conditions for the
mosquito. Passing the mid-century the Mediterranean coast of Spain
seems to become unfavourable for Ae. albopictus. On the other hand,
climatic suitability in western Europe is projected to increase
considerably. France can be expected to become the country with
the best climatic suitability, regardless of the applied model or
scenario. At the end of the century, our results suggest that especially
some western parts of the Mediterranean such as Spain seem to
develop towards a climatically unsuitable direction for the species.
Today's temperate regions of Europe will be characterised by a
continental gradient of climatic suitability, with central Europe
becoming a more and more suitable habitat. The United Kingdom
will be exposed to the establishment and spread of Ae. albopictus as
well. Scandinavia is projected to remain outside of the bioclimatic
niche, with the exception of Denmark, where a limited suitability is
indicated at the end of the century.

3.3. Comparison of model results

Even though the decreasing climatic suitability in the south and
the increasing suitability in central Europe are highlighted by both
scenarios andmodels, this tendency is more pronounced in the EKBM.
Notably, this model tends to attribute central and eastern Europe with
substantially higher values of suitability throughout the 21st century
than the SBM (Suppl. Fig. 1). The SBM, however, pointed out better
habitat conditions for the south-west, south and south-east of Europe
and additionally for the United Kingdom than the EKBM. This is true
for both scenarios.

Differences between climate change scenarios are worth men-
tioning (see also Suppl. Fig. 2). Generally, higher values of climatic
suitability for Ae. albopictus in both models refer to the A1B scenario.
This becomes especially apparent in the SBM for central Europe,
eastern Europe, and for the British Isles (time periods 2011–2040 and



Fig. 2. Global climatic suitability, modelled based on global occurrence data under current conditions. MaxEnt suitability values range from zero to one. High values represent
favourable climatic conditions for the species; values close to zero indicate unfavourable climatic conditions. Results are mapped for the global-driven: a) expert knowledge based
model and b) statistic based model.
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2041–2070) and in the EKBM in the later period (2071–2100).
Regionally limited areas of the Iberian Peninsula and France are
detected to be more suited following the B1 scenario.

Regarding the changing climatic suitability we compare trends
across different time periods. Clear temporal trends of the changing
climatic suitability in projections of the EKBM exist, with a stronger
emphasis in the A1B scenario (Suppl. Fig. 3). Western, central and
eastern Europe are characterised by an increase in climatic suitability
throughout the 21st century, while climatic suitability decreases in
the south from one period to the following. Nevertheless, projections
of the SBM do not show such a clear tendency (Suppl. Fig. 4). Although
suitability also decreases generally in southern Europe, some spatially
limited regions in central Spain and northern Italy show increasing
climatic suitability, when the time period 2011–40 is compared with
current conditions. For the southern parts of Europe generally only
Fig. 3. Current climatic suitability modelled based on the species' occurrences in the native ra
a) expert knowledge based model and b) statistic based model. Both native models failed t
small changes in climatic suitability are projected from the time
period 2011–40 to 2041–70 in both scenarios. Instead, increasing
suitability at higher latitudes is projected for the end of the century.

3.4. Niche overlap, climatic similarity and non-analogue climate

Climatic similarity between regions was determined by MESS
analysis (Elith et al., 2010) ranging theoretically from 100 (maximum
similarity) to zero (minimal similarity). Negative values represent
non-analogue climatic conditions. Non-analogy may be caused either
by e.g. completely divergent relationships between the chosen
climatic variables in training and projected area or by completely
novel relationships of the variables in the projections across space
and/or time (Fitzpatrick and Hargrove, 2009). Projections of a species'
climatic suitability must then be expected to be biassed.
nge and projected to the European continent. Results are mapped for the global-driven
o predict the current distribution of Aedes albopictus in Europe.
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Fig. 4. Current and projected climatic suitability for Aedes albopictus in Europe derived from the global-driven expert knowledge based model.
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In none of our projections non-analogue climate can be identified
(Suppl. Figs. 5–7). For projections of the native models to current
European climate (Suppl. Fig. 5), the climatic variables selected of the
EKBM show higher similarity. Regions with lowest similarity in both
projections are the northeast of Italy, the coastal areas of Belgium, the
Netherlands, the north-west of Germany and parts of Scandinavia as
well as mountainous regions in general.

Non-analogue climate must not only be a phenomenon occurring
between regions but also between time periods. But again, no
Fig. 5. Current and projected climatic suitability for Aedes albopictus
European region was found to exhibit non-analogue climatic
conditions in temporal projections of the two global models. The
lowest values of similarity are detected in the highest mountainous
regions (Alps and Pyrenees), the north-eastern parts of Italy, the
coastal areas of the North Sea and the coast of Norway. Projections
of the EKBM (Suppl. Fig. 6) generally result in higher values of
similarity. However, these projections tend to perform dispersed
spatial patterns of similarity. Using the SBM projection (Suppl.
Fig. 7) France, the Iberian Peninsula and Turkey reach considerably
in Europe derived from the global-driven statistic based model.
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lower values of similarity compared to the EKBM projection. Only
slight deviations between scenarios and time periods were found in
the results for both global climatic datasets that were used for
projection.

4. Discussion

4.1. Reflection of the results and comparison to previous studies

Our aim was to identify areas that can serve as a potential habitat
for Ae. Albopictus, today and under future climate change. Two sets of
bioclimatic variables were used to detect the influence of variable
selections on spatio-temporal patterns of model output. In addition,
we tested if records of occurrence of the former native or of the recent
global range are more appropriate for predicting the current
distribution in Europe.

Particularly in early stages of the invasion process, niche models are
usually trained with data from the native range and applied to areas
that are novel for the potentially invasive species (Mau-Crimmins et al.,
2006). As invasive species are known to be adaptive (Eritja et al., 2005;
Juliano and Lounibos, 2005), the habitat preferences of the species may
change during the invasion process (e.g. Pearman et al., 2008; Medley,
2010). In that case, the ecology of the species in its native range cannot
be directly transferred to the invaded area. On the other hand, the
native range may not necessarily cover a species' entire fundamental
niche (Broennimann et al., 2007).

Modelling potential spread and range dynamics based on the
native habitats of a species alone has limits that can be overcome
when additional data from recently occupied locations are integrated
into the analyses (Broennimann and Guisan, 2008). Hence, we built
native and global models in order to assess the influence on the
estimated environmental niches of the invasive species. Since the
global models use presence records of Europe, it was expected that
they showed good results concerning the current European distribu-
tion. Ae. albopictus has the potential to adapt to local conditions during
or after the invasion process (Medley, 2010). Hence, even using all
existing species occurrence data does not guarantee per se accurate
predictions of species current distribution.

We applied the regional climate model CCLM for climate pro-
jections of Europe. CCLM projects Europe to experience only a
moderate warming during the first half of the century (annual
mean temperature and mean winter temperatures). As mean
temperature is projected to increase significantly from the mid-
century onwards, certain regions reach the temperature threshold
found by the global climatic envelope of the species. Precipitation,
however, may be overestimated during all seasons and therefore the
largest number of consecutive dry days may be higher than projected
(Roesch et al., 2008), resulting in reduced habitat availability and
survival rates.

An expansion of climatically suitable habitats over time could be
observed in both model projections. The results raise concerns of a
serious risk for the establishment of Ae. albopictus in western and
central Europe. Once the species arrives there, it will be able to survive
and establish permanent populations (Takumi et al., 2009). Annual
mean temperature and annual precipitation are the only climatic
variables that are applied in both global-driven models. Nevertheless,
annual mean values should be considered as proxy-values, because
the species is not active throughout the whole year in all established
regions.

The risk of invasion of Ae. albopictus under current climatic
conditions was examined in previous approaches for European
countries (Knudsen et al., 1996), the Mediterranean Basin (Mitchell,
1995), and Spain (Eritja et al., 2005). In comparison to the previously
hypothesised suitable areas for establishment of Ae. albopictus in
Spain (Eritja et al., 2005), we found a greater extent of suitable
climatic conditions in the north-west (Galicia) and south-west of
Spain (western Andalucía). The European risk map of Knudsen et al.
(1996) is categorised in three classes at country level: high, moderate
and low risk. This does not enable for a detailed detection of suitable
areas. Benedict et al. (2007) present a global risk map for the
establishment of Ae. albopictus under current climatic conditions.
When focusing on the European part of this global map it is noticeable,
that the south-western areas of the United Kingdom and Ireland show
a higher climatic suitability than we found in our investigation. We
observe a “coast phenomenon” beyond the one described in Benedict
et al. (2007): The coastal areas of invaded continents seem to be
climatically suitable for Ae. albopictus. This is especially true for the
Americas (Pacific coastline of Washington, Oregon, California, Mexico
and Chile), Europe (Atlantic coastline of Portugal, Spain and France),
Africa (Atlantic coastline of Ghana, Cote d'Ivoire and for the Indian
Ocean coastline of Mozambique), and for Australia (southern and
western coastline). But no occurrences have yet been documented in
these areas.

Certainly, some of these regions have implemented pronounced
mosquito monitoring and control programmes. On the one hand,
these findings may indicate that introduction of the species has not
yet occurred or has been avoided. On the other hand, further climate
factors could play a role under oceanic climatic conditions, which
contribute to suppress the mosquito populations, such as wind, sea
salt aerosols, or humidity.

ECDC (2009) practised ensemble forecasting for specific years
(2010 and 2030) by embedding different scenarios to detect future
possible risk areas for the establishment of Ae. albopictus in Europe. In
contrast, we used climatic averages over longer time periods, which
handicap the direct comparability of the results. Nevertheless, under
current conditions our global-driven models seem to project higher
climatic suitability for the south-west of France and Portugal and
lower suitability for Spain compared to the ECDC statistical model.
Even the minimal impact scenario of the ECDC-projections (2030)
determines more European regions to be climatically suitable,
especially France, Belgium, Luxembourg, the Netherlands, Germany
and Greece. The tendencies of the projected eastward expansion in
climatic suitability in this study are in agreement with our findings.
4.2. Limitations

As with all climate impact studies, uncertainties connected to
future climate projections must be taken into account (Beaumont
et al., 2008). Tominimise this limitationwe applied two scenarios that
document the respective storyline best: A1B and B1 (IPCC, 2007).
Apart from overall climatic conditions, microclimate and habitat
availability will strongly influence the success of Ae. albopictus (Romi
et al., 2006; Lounibos et al., 2010). Regions that display unsuitable
annual rainfall in general might nevertheless supply the mosquito
with hydroponic facilities when ambient conditions are dry (Romi
et al., 2006). In the same way indoor hibernation could protect the
mosquito from cold extremes. Such aspects are difficult to account for
on the regional scale (Kysely and Beranova, 2009). The short-term
availability of suitable conditions at small scales can be responsible for
local establishment events under very special conditions. In the
Netherlands, Ae. albopictus was monitored in greenhouses of
companies that imported “Lucky Bamboo” (Dracaena sanderiana)
(Scholte et al., 2007). However, such anthropogenic factors cannot be
covered with our analysis. Nevertheless, the number of records used
in this study as well as the large geographical extent of data provides a
sound basis for the detection of robust large scale patterns.

In addition to spatial aspects of uncertainty, temporal variability is
relevant. Besides changes in climatic trends, extreme weather events
are also expected to increase in magnitude and frequency (Semmler
and Jacob, 2004; Jentsch and Beierkuhnlein, 2008), so that a temporal
window of opportunity for an invasive vector could arise. Up to now,
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both aspects can hardly be reflected and projected accurately in
climate models (Beniston et al., 2007).

Using only climatic variables as explanatory variables for scenarios
may be problematic (Dormann, 2007;Wiens et al., 2009): Land use and
land cover can modify the realised ecological niche in a certain region,
but become more important for modelling species distribution on
smaller spatial scales (Pearson and Dawson, 2003). Knowledge on
interspecific competition, predation as well as quantitative life history
traitsmay improve the understanding of the invasion processes (Juliano
et al., 2004; Juliano and Lounibos, 2005; Armbruster and Conn, 2006;
Armistead et al., 2008; Juliano, 2009) and could provide input data for
process-basedmodels of invader spread. As themosquito adapts rapidly
to its environment the ecological niche models will have to be updated
iteratively. Mutations and even epigenetic responses have to be
considered. However, this kind of knowledge is not available yet.

On a more technical level, a further source of uncertainty stems
from spatial autocorrelation, which MaxEnt – at least currently –

cannot take into account. Spatial autocorrelation in the residuals may
for example bias parameter estimates, and lead to optimistic
estimates of model performance. Based on Moran's I, we detected
statistically significant spatial autocorrelation in the residuals for all
models. However, estimates of AUC using 32-fold spatially structured
cross-validation (e.g. Reineking et al., 2010), which is expected to be
less affected by spatial autocorrelation, were only slightly lower than
those by the 70/30 splitting approach. This indicates limited bias in
our estimates of model performance.

4.3. Relevance

Evenwhen considering the limits of extrapolative nichemodelling,
environmental envelope models remain a powerful tool to envisage
potential responses in species distribution to climate change (Wiens
et al., 2009).

Our projections refer to the regional model CCLM, which is
integrated into the well established global simulations of ECHAM5
(Rockel et al., 2008). In comparison to their driving models, regional
models project patterns of climate change at a higher spatial resolution.
This is especially relevant in climate impact studies on human health,
where precise geographical information is needed (Giorgi and Diffen-
baugh, 2008). In particular, small-scale heterogeneity has to be
considered in studies on vector-borne diseases (Jacob, 2008; Fischer et
al., 2010b). We detected those regions of Europe that are especially
endangered regarding a potential establishment of Ae. albopictus under
current conditions. Subsequently, we projected for the first time
geographic patterns of climatic suitability for the mosquito that can be
expected to develop during the entire 21st century. These risk maps of
potentially suitable areas for the establishment may serve as a valuable
support for the design of monitoring and control activities. These can
contribute to avoid the further spread of the disease vector and prevent
the human population from unexpected disease outbreaks. Knowledge
of potential future occurrences of the vector Ae. albopictus becomes
especially relevant regarding the increasing European areas that are
expected to provide suitable temperatures for dengue-virus amplifica-
tion in the 21st century (Thomas et al., 2011).

Projections of species distribution in regions of non-analogue
climate are a common, but still a rarely addressed problem in species
distribution modelling. The consequences can be ecologically and
statistically invalid studies (Fitzpatrick and Hargrove, 2009). To assess
the problem of non-analogue climate, we re-analysed our dataset
using the MESS analysis (Elith et al., 2010). No regions with non-
analogue climate were detected.

5. Conclusions

Our findings indicate an increasing risk of establishment by Ae.
albopictus especially for the Atlantic Coast of the Iberian Peninsula and
for the south-west of France. In addition to the detection of already
potentially appropriate areas, we find additional areas of potential
future establishment of Ae. albopictus. It is possible that the mosquito
has already colonised larger areas than noticed. Large areas of western
and central Europe that are inappropriate for the species today are
projected to change during the 21st century towards a climate that
can support the survival of the species. Once the species is established,
it is very difficult to control.

However, unintended anthropogenic introduction (e.g. by ship-
ping goods) can be expected as a constant source of insecurity and
will very likely contribute consistently to the introduction of
mosquito populations especially close to the hubs of infrastructure
(harbours and large railroad terminals). Therefore, we believe in
efficiency of monitoring schemes for Europe, in order to be able to
limit the spread of Ae. albopictus and the diseases that can be
transmitted by this vector.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.gloplacha.2011.05.008.
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